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Abstract

The Ensemble Adjustment Kalman Filter (EAKF) is used to estimate the erodibility frac-
tion parameter field in a coupled meteorology and dust aerosol model (Coupled Ocean
Atmosphere Mesoscale Prediction System-COAMPS) over the Sahara desert. Erodi-
bility is often employed as the key parameter to map dust source. It is used along with5

surface winds (or surface wind stress) to calculate dust emissions. Using the Saha-
ran desert as a test bed, a perfect model Observation System Simulation Experiments
(OSSEs) with 40 ensemble members, and observations of aerosol optical depth (AOD),
the EAKF is shown to recover correct values of erodibility at about 80 % of the points
in the domain. It is found that dust advected from upstream grid points acts as noise10

and complicates erodibility estimation. It is also found that the rate of convergence is
significantly impacted by the structure of the initial distribution of erodibility estimates;
isotropic initial distributions exhibit slow convergence while initial distributions with ge-
ographically localized structure converge more quickly. Experiments using observa-
tions of Deep Blue AOD retrievals from the MODIS satellite sensor result in erodibility15

estimates that are considerably lower than the values used operationally. Verification
shows that the use of the tuned erodibility field results in better predictions of AOD over
the Western Sahara and Arabia.

1 Introduction

Uncertainty in initial conditions, incorrect boundary conditions, and model inadequa-20

cies render forecasts of the atmosphere generated using Numerical Weather Predic-
tion (NWP) models inaccurate. To obtain the best initial conditions possible, estimation
techniques (e.g. data assimilation) are used to combine the state estimates given by
the model and those given by the observations. There are a multitude of data assim-
ilation (DA) techniques used in the geophysical community. The first truly operational25

DA systems have been based on relatively simple 2-D variational techniques (Zhang
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et al., 2008). Apart from 2-D techniques, 4-D variational techniques have been imple-
mented in both research and quasi-operational modes (Wang et al., 2001; Uno et al.,
2008; Benedetti et al., 2009). Perhaps the most promising development for broad ap-
plications, however, has been in the application of ensemble based techniques to not
only estimate the state but also to tune aerosol source functions (Lin et al., 2008a,b;5

Schutgens et al., 2010; Sekiyama et al., 2010; Yumimoto and Takemura, 2011).
Ensemble based assimilation forms an important class of data assimilation method-

ologies. Ensemble based DA was introduced into atmospheric and oceanic sciences
by Evensen (1994) and Houtekamer and Mitchell (1998). Since then the scientific com-
munity has actively researched the theory and practices of ensemble based data as-10

similation. The theoretical development includes different formulations of the ensemble
filter (Bishop et al., 2001; Tipett et al., 2003; Zupanksi, 2005; Hodyss, 2012) and their
inter comparisons (Lawson and Hansen, 2004; Lei et al., 2010). Ensemble based DA
has been applied to an entire gamut of atmospheric (Majumdar et al., 2002; Whitaker
et al., 2004) and oceanographic problems. Houtekamer et al. (2005) have done en-15

semble based DA in a global model using real satellite and other observations. The
performance of ensemble DA in mesoscale models has been investigated by Dirren
et al. (2007), by using radio soundings and aircraft observations in the Weather Re-
search and Forecasting model. Wang et al. (2008) have explored a hybrid DA technique
using the WRF model over the North American domain with radiosonde observations.20

Szunyogh et al. (2008) showed that a global analysis and forecast can be efficiently
produced using the parallelized Local Ensemble Transform Kalman Filter. Keppenne
and Rienecker (2002) have designed and implemented a parallelized multivariate En-
semble Kalman filter in an ocean model in the pacific domain using sparse temperature
data.25

Apart from incorrect initial conditions imperfections in model parametrizations are
also responsible for inaccurate forecasts. The technique of ensemble based parame-
ter estimation (Annan et al., 2005) has been employed by numerous researchers as a
means of attempting to reduce model error. Ensemble based parameter tuning, apart
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from state estimation, is becoming increasingly popular in the estimation community.
The Ensemble Kalman filter was employed in Aksoy et al. (2006) to estimate multiple
parameters in a sea-breeze model. The EnKF was used in Hacker and Snyder (2005)
for PBL state estimation by assimilating simulated surface mesonet observations. That
work concluded that the PBL state can be effectively constrained by surface obser-5

vations thereby reducing forecast errors. The moisture availability parameter was also
correctly estimated. Encouraged by these results Hacker and Rostkier-Edelstein (2007)
implemented the EnKF to estimate the PBL profiles using real surface observations. It
was found that the error could be reduced by up to 85 % compared to the case when
data is not assimilated.10

The previously mentioned success with ensemble DA methods is suggestive of a
number of aerosol related problems. Already skill improvement in aerosol loadings
by ensemble DA techniques is well documented (aforementioned, Lin et al., 2008a,b;
Schutgens et al., 2010; Sekiyama et al., 2010; Yumimoto and Takemura, 2011). A sec-
ond area of great promise is application to model parameterization problems. Perhaps15

greatest of these are aerosol source functions, which are widely known to have high un-
certainties and often drive significant divergence between aerosol modeling systems.
Given the relative simplicity of chemical transformational processes associated with
dust relative to other species, as well as its strong, clear and intercontinental signal
in remote sensing data sets, dust is an ideal species to examine how ensemble data20

assimilation can impact not only aerosol loading, but other model parameterizations
such as source functions. Indeed, while commonly used dust models often converge in
observables such as bulk regional Aerosol Optical Depth (AOD), there is considerable
divergence in lifecycle processes and budgets (Huneeus et al., 2011).

In this study we perform a series of studies to examine the application of ensemble25

based methods to improve model simulations of dust production. Throughout this work
Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) is used in the
North Africa/Saharan domain. In this work,
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– the Ensemble Adjustment Kalman Filter (Anderson, 2001) is employed within the
DART framework (Anderson et al., 2009; Whitcomb, 2008).

– the state (AOD and the dust concentration) and parameters (erodibility as a proxy
for source region) related to dust production are estimated by assimilating obser-
vations of AOD.5

– estimation experiments with both simulated and real satellite observations are
performed.

We find that a 40 member ensemble is able to successfully tune the spatially distributed
erodibility parameters in the Observation System Simulation Experiment (OSSE). The
covariance between the local erodibility and locally produced dust drives the tuning10

of the erodibility parameters. Advected dust, as opposed to locally produced dust,
confounds the covariance signal thereby acting as noise. The tuning improves if the
perturbations in parameters are correlated over length scales of about 5 grid points
(400 km). Guided by the success of the OSSE, we have performed tuning experiment
using satellite data of Aerosol Optical Depth (AOD). The tuned values are significantly15

smaller than the operational values of erodibility. The verification experiments show that
using the tuned erodibility map leads to a significant decrease in the mean absolute
error of AOD forecast over large parts of Western Sahara and Arabia.

This paper is organized as follows. The model is described in Sect. 2. The tuning
experiments using simulated observations are presented in Sects. 3, 4 and 5. Sec-20

tion 3 describes the setup of the simulated data tuning experiments. Section 3 also
discusses the tuning of erodibility at a particular grid point in detail. The tuning of erodi-
bility over the whole domain is discussed in Sect. 4. In this section the perturbations in
the erodibility at each grid point are assumed to be independent. The case of correlated
perturbations in erodibility is considered in Sect. 5. The tuning experiments with real25

satellite data are described in Sect. 6. The tuned erodibility is used to run verification
experiments whose results are presented in Sect. 6. The conclusions of this work are
summarized in Sect. 7.
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2 COAMPS mesoscale aerosol model

The meteorological community, over the years, has developed many mesoscale mod-
els (e.g. WRF, Skamarock et al., 2005) for researching and forecasting weather phe-
nomenon. The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)
(Hodur, 1997; Chen et al., 2003) is a mesoscale model used to simulate various atmo-5

spheric (Doyle and Bond, 2001) and oceanographic phenomenon (May et al., 2011). It
is used not only for basic research, but operationally by the US Navy. The atmospheric
model is non-hydrostatic and fully compressible. It allows for nested grids in which the
resolution can increase up to a few meters. COAMPS employs staggered horizontal
and vertical grids with a terrain following sigma Z system for the vertical coordinate.10

COAMPS includes advanced parametrizations for subgrid scale mixing, radiation, cu-
mulus parametrization and explicit moist physics. In this work COAMPS is run with
30 vertical levels. Throughout this work the model uses a resolution of 81 km in the
horizontal.

Both the research and operational versions of COAMPS includes a dust module to15

model the generation, transport and physical effects of aerosols particles, including
their size and physical transformations (Liu et al., 2003, 2007). The module includes
simulation of sinks such as sedimentation, dry deposition and wet removal. The inte-
gration of the aerosol module provides outputs of various quantities like mass loading,
size distribution, optical depth etc. COAMPS can be used for research purposes.20

The details of the COAMPS dust aerosol model are as follows. The vertical dust flux
F at a particular grid point (i , j ) is given by Westphal et al. (1988) as,

Fi ,j = k ×αi ,j ×u4
∗i ,j (1)

where the subscript i , j denotes the latitude and longitude index, respectively.

k = 1.42×10−5
25

αi ,j is the erodibility
28842
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u∗i ,j is the friction velocity in ms−1

The dust is generated only if u∗i ,j > u∗t i ,j where u∗t i ,j is a threshold friction velocity.
The amount of dust mobilized depends upon the transfer of (atmospheric) momentum
to the earth’s surface. This transfer of momentum is proportional to the surface stress

τ (Gill, 1982). The friction velocity u∗ is related to the surface stress through u∗ =
√
τ/ρ5

where ρ is the density. Using theory and experimentation it is shown that the dust
flux is proportional to the fourth power of the friction velocity (Gillette and Passi, 1988;
Nickling and Gillies, 1993). This proportionality forms the basis of Eq. (1). The dust is
mobilized because the surface wind erodes the land surface. Different land surfaces
have different susceptibilities to erosion by wind. The susceptibility basically depends10

on the type of soil covering the land surface. For example, a land surface covered by
thick vegetation is less susceptible to erosion than one covered with loose and dis-
turbed soil. The production of dust requires a threshold friction velocity to be reached
before dust particles can be lifted from the surface. This threshold friction velocity is
represented by u∗t. At a given grid point dust is not mobilized for u∗ < u∗t. The values15

of u∗t for various land types have been estimated using field experiment data and labo-
ratory experimentation (Gillette and Passi, 1988). Various modeling studies (Westphal
et al., 1988; Liu et al., 2007) use a value of u∗t = 0.6ms−1 for all land types for simplicity.
Given a particular model grid box, the whole grid box need not be covered by erodible
land. Therefore even if u∗ exceeds u∗t, only a part of the grid box which is erodible may20

emit dust. This is quantified by the erodibility αi ,j in Eq. (1) as a spatial weighting func-
tion. At each grid point the erodibility has a value between 0 (no emission) and 1.0 (all
emission). The value of the constant k in Eq. (1) is taken from Westphal et al. (1987),
which in turn was motivated by Gillette (1981). This value of k is the slope of the linear
fit to the scatter plot of experimentally obtained flux data for various values of friction25

velocity. Since the current study focuses on satellite data assimilation, we model only
the actively optical and transportable dust with an assumed diameter of 2 micron for
microphysical purposes.
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The amount of dust in the atmosphere is quantified by the dust concentration (cm) in
µgm−3. The Aerosol Optical Depth (AOD) is another measure of the amount of dust.
The AOD at a particular grid point i , j is obtained by vertically integrating the dust
light extinction over the atmospheric column, which is simply defined here as the mass
concentration times a mass extinction efficiency (ae) taken as 0.5 m2 g−1.5

AODi ,j =
∫

(aecmi ,j
)dz

where z is the height. Hence, here we are assuming that AOD is linearly proportional
to total mass concentration. In reality, dynamics of dust particle size, especially large
particles near sources can be quite complicated. However for the purpose of this work
this assumption is valid because we want to tune the dust emitting areas to the first10

order.
The dust generated at various locations in the domain is mixed vertically and ad-

vected horizontally. The dust in the atmosphere at a given grid point and vertical level
is due to local generation and that advected from upstream areas. The share of the
advected and local dust in the total dust depends on meteorological conditions, specif-15

ically the wind field. The amount of local dust depends on the erodibility and friction
velocity at that grid point. It is possible that for a particular grid point at a particular time
at some vertical levels the advected dust dominates while at other levels the local dust
constitutes the major portion of the dust. In general the total dust contains contributions
from local production and dust transported from other areas. Since AOD is the vertical20

integral of dust concentration, the total AOD at a grid point has contribution from local
and transported dust.

The AOD at a particular grid point can be expressed as,

AODi ,j = AODlocal
i ,j +AODtransport

i ,j
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The transported AOD is due to dust that is produced in upstream regions and advected
by winds. The local generation is given by the dust flux Fi ,j . Therefore,

AODi ,j =
∫ ∫

(aeFi ,j )dadt+AODtransport
i ,j

The horizontal area element is represented by da and the time step is given by dt.
Substituting for the dust flux from Eq. (1), AODi ,j can be expressed as,5

AODi ,j =
∫ ∫

(aek ×αi ,j ×u4
∗i ,j )dadt+AODtransport

i ,j (2)

Though the sink term is not mentioned in these equations, the actual model calcu-
lates the removal of the aerosol. Equation (2) decomposes the total AOD into the local
and advected component. This decomposition is central to the understanding of the
tuning of erodibility as will be evident in Sect. 4. The erodibility plays an important10

role in the calculation of AOD. In this work α is used to denote the erodibility vector
whose components (αi ,j ) are the erodibilities at various grid points. Accurate forecasts
of dust production and transport depend critically on an accurate map of erodibility (Liu
et al., 2007). The determination of the value of α at various locations on the earth is
a formidable task. Many researchers (Westphal et al., 1988; Tegen and Fung, 1994;15

Park and In, 2003; Walker et al., 2009) have made significant efforts to produce maps
of α for important dust producing regions of the earth. The efforts made by these re-
searchers involve the analyses of different types of landforms and the variation of their
properties with season etc. These efforts involve the visual inspection of atlases and
also observations of Aerosol Optical Depths (AOD).20

In the current work we aim to use satellite observations of AOD to estimate an opti-
cally active α in the North African region by employing an ensemble based estimation
approach. Note that the satellite observations of the total AOD, that is the left hand side
of Eq. (2) are available. Observations of local and transported AOD are not separately
available. In the next section we describe the estimation experiments with simulated25

AOD data.
28845

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/28837/2012/acpd-12-28837-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/28837/2012/acpd-12-28837-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 28837–28889, 2012

Ensemble filter
based estimation of

mesoscale
parameters

V. M. Khade et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3 Observation System Simulation Experiment (OSSE)

The ultimate objective of this work is to improve the forecasts of AOD over the Sahara
by tuning α using satellite observations of AOD. However prior to performing exper-
iments with satellite data, an Observation System Simulation Experiment (OSSE) is
performed. OSSEs are important tools to assess the amenability of a model to tun-5

ing. An OSSE is cast in as a perfect model experiment. A particular set of values of
erodibility are defined to be correct (or perfect). Observations of AOD are drawn from a
model run using the defined correct values of erodibility. An imperfect model is defined
by choosing values of α different from the perfect model values. The meteorological
boundary and initial conditions are obtained from Navy Operational Global Atmospheric10

Prediction System (NOGAPS) global model (Hogan and Rosmond, 1991). An ensem-
ble of these boundary conditions is used so that each ensemble member is a different
realization of meteorology. The perfect model experiment uses a particular ensemble
member of meteorology. The AOD “observations” from the assumed perfect model are
assimilated into the imperfect model and the following question is posed: are the per-15

fect values of erodibility recovered by the ensemble based tuning? Because one has
defined the imperfect model to be different from perfect model only in α , the OSSE
represents the best case scenario. Compared to nature, the model has many errors
apart from imperfect α . Hence if the perfect α values are not recovered in the OSSE
then α will certainly not be tuned correctly using real data.20

The OSSE is run using the meteorology of June/July 2009, corresponding to the
well-known peak in the Saharan dust production and its westward transport into the
subtropical Atlantic Ocean. The operational values of α over the Sahara domain are
shown in Fig. 1a and are used in the operational run of COAMPS. These values are
used here for the perfect model run. An index of the frequency with which the threshold25

friction velocity is achieved in June/July 2009 at 12:00 Z is shown in Fig. 1b. This index
is the fraction (expressed in percent) of the total days in June/July 2009 period that u∗
exceeded 0.6ms−1 at 12:00 Z. The observations of AOD are used to update the AOD,
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dust concentration and the erodibility map. Note that the dust concentration is a three-
dimensional field. Operationally a threshold value of u∗t = 0.6 is used. However using
the threshold value of u∗t = 0.6 in the OSSE would tune values only in high friction
velocity regions, thus complicating the interpretation of OSSE results. Therefore in the
OSSE a value of u∗t = 0.0 is used.5

Throughout this work an ensemble size of N = 40 is used. Each ensemble member
has a different initial value of α . At each grid point the ensemble for αi ,j is obtained
by sampling 40 ensemble members from a Gaussian distribution ξ(0.25,0.25) where
0.25 is the mean and the standard deviation (spread). The ensemble members with
negative values are set equal to 0.01. This distribution defines the initial guess. The10

maps of the mean and standard deviation of this initial guess are shown in Fig. 1c
and d, respectively. The model is spun up by integrating ensemble members for 60 h
starting at 00:00 Z, 10 June 2009. The first DA cycle is implemented at 12:00 Z, 12 June
2009. The DA cycling frequency is 24 h. That is, the DA cycle (update) is implemented
at 12:00 Z, every day. This frequency for update is chosen because real satellite data15

is available at 12:00 Z every day. The OSSE is run for 48 days ending on 18 July 2009
at 12:00 Z, so that there are 48 update cycles. Ensemble analysis boundary conditions
from a global model (NOGAPS) are used every 6 h. These ensemble analysis are
obtained by the local Ensemble transform technique (McLay et al., 2010). Only the
AOD is observed. The dust concentration and erodibility are not observed. In this work20

meteorological observations are not assimilated.
Data assimilation experiments with only state (dust concentration) estimation were

performed. The forecasts did not improve with state estimation alone. The results from
this experiment show that improving the initial conditions in cm is not important. This
is because the source and sinks of dust are strong over a 24 h period and play the key25

role in deciding the forecast. In other words over a 24 h period the sources dominate
the dust transport especially over areas of strong dust generation.

The theory underlying parameter estimation is the same as that of state estimation.
Therefore, the state is augmented by the parameters (α ) and data is assimilated. How-
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ever parameters do not have dynamical equations to integrate them in time which gives
rise to some problems. The next section describes these problems and the methodol-
ogy used in this work to address these problems.

3.1 Spread in α

The state variables (temperature, wind speed etc.) have dynamics evolution equations5

which are used to integrate these variables forward in time between consecutive up-
dates. However the parameter α which is tuned in this work does not have a dynamics
evolution equation. At a particular grid point we use the following equation to step for-
ward each ensemble member of αi ,j

αk
i ,j (t+1) = αk

i ,j (t)10

where k denotes a particular ensemble member and t denotes time.
The lack of a dynamic evolution equation for α gives rise to another issue – that

of spread in α . Theory states that each time data assimilation updates α , the spread
in α must decrease or remain constant. The smaller the spread in α the less impact
observations in succeeding update cycles will have. In the absence of a dynamic evo-15

lution equation for α where errors grow in time, the prior spread at a particular update
is simply the posterior spread at the last update cycle. This problem is addressed in
this work by using conditional inflation (Aksoy et al., 2006). If the posterior spread in
αi ,j falls below a particular threshold value (∆αth) the posterior perturbations in αi ,j are
scaled so that the spread is equal to a particular fixed value (∆αfix).20

αk
i ,j (t+1) = αk

i ,j (t)+∆αfix

(
αk
i ,j (t)− α̃i ,j (t)

)
where α̃i ,j is the mean erodibility.

In this work the threshold value used is ∆αth = 0.05 and ∆αfix = 0.05. These values
are chosen after experimentation with different values. If the mean of posterior αi ,j is
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close to the limits of αi ,j (0 and 1) then a different strategy is employed. If the mean is
less than 0.05 or more than 0.095, the spread is set equal to 0.015. Also if the posterior
mean decreases below 0.03 (increases above 0.97) it is reset to 0.03 (0.97). One more
issue is the risk of unphysical values of the posterior parameter ensemble. Negative
values of αi ,j are physically meaningless and it is possible that an update results in5

negative values for some members of the posterior αi ,j . In this work such ensemble
members with negative values are set equal to 0.01.

Before presenting the results of tuning over the whole domain, in the next section the
tuning of αi ,j (at a single grid point) in the OSSE is explained.

3.2 Tuning at a grid point10

It is instructive to consider the tuning of αi ,j at a single grid point, allowing the illumina-
tion of various issues involved in ensemble based parameter estimation. The full three
dimensional COAMPS model is run with assimilation of simulated AOD data every 24 h.
In the experiment described in this section each αi ,j is updated using AOD observation
only at that grid point i , j . In this experiment the AOD is observed at all grid points.15

The tuning of αi ,j at point K (Fig. 1a) as the update cycles proceed is shown in
Fig. 2a. It shows the mean and standard deviation of the αi ,j estimate as the update
cycles proceed. The red line shows the truth, that is, the operational value of αi ,j at this
point K. The mean and standard deviation of the initial guess is 0.3 and 0.2, respec-
tively. As the update cycles proceed the estimate of αi ,j approaches the correct value.20

For this grid point, by 20 cycles the correct value is recovered.
In this example, the αi ,j update uses AOD observations only at the same grid point,

the mean of the posterior (or update) at any update cycle is given by,

αup = αprior +
cov

(
αprior,AODprior

)[
var(AODprior)+ var(AODobs)

] [AODobs −AODprior
]

(3)

In this equation the subscript i , j is not used. All the quantities in this equation are at grid25

point K. In this equation AODobs represents the AOD observation. The observational
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error variance is given by var(AODobs) which is set to 10 % of the mean observation.
This observational error variance is motivated by AOD satellite data whose error is
typically 10 % of mean observation. The other terms are calculated from the short term
ensemble forecast (the prior). The covariance cov

(
αprior,AODprior

)
plays an important

role in the update equation. This covariance exists because of the relation between5

AODprior and αprior which is given by Eq. (2). The short term ensemble forecast gives
40 different AOD realizations. Each realization of AODprior corresponds to a particular
realization of local variables, non-local variables and meteorology. The local (at point
K) variables are αprior and u∗. The non-local variables are α and u∗ at regions that are
upstream of point K. The meteorological variable of interest is wind because it advects10

dust from upstream regions. Therefore the uncertainty in the AODprior ensemble is due
to the uncertainties in local α, local u∗, upstream α, upstream u∗ and winds. From
Eq. (2), the uncertainty in prior AOD can be written as,

var(AODprior) = var(AODlocal
prior)+ var(AODtransport

prior ) (4)

The contribution of uncertainty in local variables is contained in the first term on the15

right hand side (rhs) of Eq. (4). The contribution from non-local variables and winds is
given by the the second term on the rhs of Eq. (4). Out of the total spread of αprior only
a part is correlated with the αprior. This part is the first term of Eq. (4). The remaining
spread is due to that in the transported AOD given by the second term which acts as
advective additive noise. Given a particular magnitude of advective noise, the strength20

of the covariance between AODprior and αprior depends on the magnitude of the friction
velocity. The time series of u∗ and cov

(
αprior,AODprior

)
is shown in Fig. 2b. The covari-

ance (scaled up by a factor of 10) is shown by the green curve. The covariance tends
to be higher for higher values of u∗. This is because stronger local generation helps
the covariance signal to rise above advective noise. The prior AOD and α ensembles25

at update cycle 6 are shown in panel Fig. 2c. The update cycle 6 is marked on each
of the curves in Fig. 2a, b, d by squares. The red square in Fig. 2c shows the mean of
the prior ensemble. The spread in the prior AOD ensemble in Fig. 2c includes spread
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due to local α and additive noise. A finite size ensemble is used to estimate the true
covariance. Because of the small size of the ensemble it is expected that the ensem-
ble estimate of covariances will not match the true covariance. Such covariances are
termed spurious. Spurious covariance is basically an inaccurate estimate of the true
covariance due to sampling errors. For example (Fig. 2b) the negative covariance val-5

ues at update cycle 4 and 11 are spurious. The finite (small) size of the ensemble (40
in this work) is the reason for these spurious covariances.

The estimates of AOD are shown in panel Fig. 2d. The red curve in Fig. 2d is the truth
which is same as the mean observation of AOD. In this work the mean of the simulated
observations is not perturbed. The difference between the observation mean and prior10

AOD mean is termed the “innovation”. (AODobs −AODprior) is the innovation in Eq. (3).
At update cycle 6 the innovation is about 1.0. The difference (αup −αprior) is termed
the increment or correction. At each update cycle the covariance, the innovation and
the uncertainty in AOD together dictate the correction in α. The sign of the innova-
tion, along with the prior covariance decides the sign of the increment. The product of15

the covariance and innovation is scaled by the uncertainty in the AOD estimates. The
uncertainty in AOD estimates is given by the denominator in Eq. (3). This quantifies
the confidence one should place in the innovation. Notice that the increment in α is
almost zero at update cycle 4 in Fig. 2a, though the covariance (Fig. 2b) is ∼0.2. This
is because the innovation (Fig. 2d) is zero at this update cycle. As the update cycles20

proceed the corrections at each update cycles progressively push the α value towards
its true value (0.48). The uncertainty in the estimate of α progressively decreases. After
about 20 update cycles the α estimate almost coincides with truth and as a result the
mean forecasted AOD and the observed AOD almost coincide (Fig. 2d). The innovation
becomes small after cycle 20 and hence the corrections are small.25

The estimate of covariance obtained using the ensemble plays a central role in decid-
ing the quality of tuning. Spurious covariance can seriously hamper successful tuning
and since they are unavoidable it is important to properly account for them. This issue
of spurious covariances is especially important when AOD observations at many differ-
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ent spatial locations are available and used in the estimation. In principle α at a single
grid point is updated using all available observations of AOD. The covariance between
α and AOD at the observed grid point informs what part of the innovation is used in the
increment. This covariance is calculated using the ensemble. If a very large ensemble
size is used the ensemble covariance is more accurate. With a small ensemble size the5

estimated covariance tends to be inaccurate especially if the true covariance is small.
The true covariance with a grid point geographically far away tends to be smaller and
hence the estimated covariance should be trusted less for far away grid points. The
concept of a cutoff radius or a localization radius is widely used in ensemble based
filtering work to address the problem of spurious covariances (Hamill et al., 2001). The10

cutoff radius, c, dictates the distance over which observations are used to calculate
the correction. This is achieved by defining a (localization) function that decays as one
moves away from the grid point being tuned. The Gaspari–Cohn function (Gaspari and
Cohn, 1999) is used in this work. The width of this function is governed by the value of
c. In the current work, we will run experiments with various values of c. The functions15

corresponding to the values of c used in this work are shown in Fig. 3 as dashed curves
at a single grid point. This grid point is marked 0 on the x-axis. The dashed cyan curve
shows the Gaspari–Cohn function corresponding to c = 5 grid points. In this work the
distance is mentioned is units of grid points. The horizontal resolution used in this work
is 81 km (5 grid points is equal to 400 km).20

The functions peak at the grid point marked 0. This is the grid point where α is being
tuned. The Gaspari–Cohn function value at a particular grid point is used as a mul-
tiplicative factor to decrease the correction due to observation at that grid point. The
functions are shown in one dimension along a latitude circle in Fig. 3. However ac-
tual functions are defined in two dimensions. Practically, observations at all grid points25

more than a distance of 2c from the point of interest do not have any impact on the
corrections.

In the next section the results of tuning α (all over the domain) is described.
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4 Tuning with uncorrelated α perturbations in OSSE

In the last section it was assumed that observations of AOD are available at all points
in the domain, whereas in reality actual satellite observations are available for many
(but not all) locations. At any given update cycle the satellite observations are sparse.
This sparseness of satellite observations is mimicked in the OSSE by observing AOD5

at 20 % of grid points in the domain. These 20 % grid points are randomly chosen at
each update cycle. In the satellite observations however the sparse regions need not
change randomly with time. The observational error is set equal to 10 % of the mean
observation, consistent with instrument accuracy.

We begin with an experiment in which the cutoff radius is set to zero. This means that10

αi ,j at any given grid point uses only the AOD observation at that grid point. A cutoff
radius is not imposed in the vertical. The mean and standard deviation of the initial
guess α is shown in Fig. 1c, d. The perturbations in α in initial guess are uncorrelated.
The result of this experiment, that is, the ensemble mean of the tuned α (after 48
cycles) over the domain is shown in Fig. 1e. The uncertainty in this estimated mean15

is given by the standard deviation in the ensemble which is shown in Fig. 1f. Because
this experiment is an OSSE we know the perfect values of erodibility at every grid point
which is shown in Fig. 1a.

If the ensemble estimation worked correctly then the tuned values in Fig. 1e should
match those in Fig. 1a. Comparing Fig. 1e to Fig. 1a, it is clear that the ensemble20

based tuning is able to recover the perfect values of α to a large extent. The estimation
is especially successful over Arabia and parts of the domain where true value of α
is small. The assimilation of data constrains the tuned values quite well, in that the
standard deviation in the tuned ensemble decreases in Fig. 1f compared to Fig. 1d.
Some areas (like the horn of Africa) have a very small spread (less than 0.025). This is25

because the mean in these areas decreases below 0.05 and the spread in such areas
in set equal to 0.015 (see Sect. 3.3).
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The success of the tuning experiment is further quantified by comparing the tuned
α value at each grid point to the true α value at that grid point. α at a particular grid
point is deemed to be (correctly) tuned if its tuned value lies within 0.05 of the true
value at that grid point. Otherwise it is deemed to be untuned. This criterion of 0.05 (in
absolute units of α ) is an arbitrary choice. This criterion is used throughout this work5

to determine the quality of tuning. The distribution of the tuned and untuned points
over the domain is shown in Fig. 4a. The grid points colored with yellow are those
tuned successfully. The white grid points are the untuned grid points. The blue contours
enclose areas with high friction velocity. These contours correspond to areas in which
the friction velocity is above 0.6 ms at least 20 % of times Fig. 4b. The red contours10

enclose areas with high true erodibility (more than 0.25). Some of the areas with high
friction velocity are marked S1, S2 and S3. Notice that in these areas the tuning is
successful. In the horn of Africa (S1) almost all the grid points are successfully tuned.
Recall that the friction velocity gives rise to the covariance signal. Consequently areas
with strong friction velocity tend to be tuned well. Some areas with weak friction velocity15

are marked W1, W2, W3 and W4. These areas tend to be poorly tuned. Consider area
W1. Note that W1 is an area of weak friction velocity sandwiched between areas of
high friction velocity on its north and south. Not only does it have a weak signal but
also high advection noise because it lies in an area of high erodibility (it is enclosed
by the red contour). As pointed out in Sect. 3.3 the advection noise is additive noise.20

The combination of low friction velocity (small local signal of AOD), and large amounts
of advected AOD makes it difficult to correctly estimate the erodibility parameters. The
situation is similar with area W3 in arabia and W2 in the center of the domain. The area
W4 in the south Sahara has weak friction velocity and low erodibility.

Using this criterion of 0.05 the number of grid point successfully tuned is counted25

and expressed as percentage of the total number of grid points. This percentage is
shown in Fig. 5 as the dashed magenta curve. By the end of 48 update cycles about
70 % of the points in the domain are correctly tuned.
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The experiment discussed above (dashed magenta curve in Fig. 5) used a value
of c = 0. However using a cutoff radius of 0 prohibits the update at any grid point
from using observations in adjoining areas. To assess the impact of using more ob-
servations, tuning experiments are run with non-zero values of c. The solid magenta
(squares) curve in Fig. 5 shows the percentage of grid points tuned correctly for an5

experiment with uncorrelated initial α perturbations and a cutoff radius equal to 20 grid
points. Clearly the results degrade compared to the c = 0 experiment (dashed magenta
curve) even though the update of α at any given grid point uses more observations in
c = 20 experiment than that in c = 0 experiment. Recall that apart from the observation
of AOD, a good estimate of the covariance between α at the point being updated and10

AOD at the location of observation is also important for correct tuning. Apparently, in
the c = 20 tuning experiment the ensemble does not correctly estimate the covariance
between α at any given grid point being updated and the neighboring location where
the observation is available. This leads to the degradation of the tuning because along
with many observations, the update uses many bad covariances. The reason for the15

bad covariances is a combination of the effect of advective noise and the small size
of the ensemble. The covariance between α at a particular point and AOD at another
point is partly controlled by the correlation between α perturbations at these two points.
For the experiment described in this section, the updates do not result in correlating the
α perturbations, that is, the initially uncorrelated α perturbations remain uncorrelated20

at the end of all the update cycles. In the current experiment the perturbations are un-
correlated and hence dust generated by all the points within the neighborhood of point
of interest contributes to the advective noise. The small ensemble finds it difficult to
capture the local signal, due to this advective noise resulting in spurious covariances.
Hence including the observations of AOD from neighboring grid points degrades the25

tuning rather than improving it. The solid magenta curve shows the result of the ex-
periment with c = 5. Its performance is intermediate between c = 0 and c = 20. The
experiment with c = 10 (magenta circles) gives almost the same result as that with
c = 20.
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However one would like to use as many observations as possible by setting c > 0.
The main hurdle to using c > 0, is the advective noise. What can be done to address
this problem? A possible solution to this problem is to correlate the perturbations in
neighboring α thereby reducing the advective noise. Also, the results of the experi-
ments in this section suggest that the assimilation of observations does not impose a5

correlation structure in the α field. That is, the observations are unable to recover the
correlation structure (if any) between initially uncorrelated α . Can the assimilation of
observations recover the correlation structure if the α perturbations are initially corre-
lated? The next section considers the issue of initially correlated α perturbations.

5 Tuning with correlated α perturbations in OSSE10

In this section the initial perturbations of α are spatially correlated. Some examples of
the correlation functions between the α perturbations are shown in Fig. 3. The point
marked 0 on the x-axis is the point of interest. The solid blue curve gives the correla-
tion between the α perturbations at point 0 and that at various neighboring points along
the latitude circle corresponding to a correlation length scale of l = 20 grid points. The15

standard deviation of this correlation function is l = 20. This correlation is constructed
by first sampling from (uncorrelated) ξ(0.25,0.25) and then constructing an ensemble-
member by ensemble-member weighted average. These weights are chosen propor-
tional to a two-dimensional gaussian function with standard deviation of l = 20. The
cyan curve shows the correlation function for l = 5. The gray curve shows the corre-20

lation function for l = 0, that is, independent perturbations. The correlation function of
any grid point in the experiment described in the Sect. 4 looks like the gray curve. The
term “correlation function” will imply correlations between α perturbations (between
two grid points).

The red (squares) curve in Fig. 5 shows the tuning curve for an experiment with25

correlation length scale l = 20 and cutoff radius c = 20. The initial mean and standard
deviation for this experiment is shown in Fig. 1c, d which is the same as that for the
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l = 0 experiment described in Sect. 4. The initial guess for the magenta curves and red
(squares) curve in Fig. 5 is the same except that for the red curve the initial α pertur-
bations are correlated over a length scale of 20 grid points. The correlation function of
any grid point in the domain for l = c = 20 experiment looks like the solid blue curve in
Fig. 3. The red (squares) curve in Fig. 5 shows that the tuning is successful for about5

the first 5 update cycles and there after degrades. The reason for this degradation can
be understood by considering the correlation function at a particular grid point, as the
update cycles proceed. The correlation function at a particular grid point (marked x in
area W1 in Fig. 4) is shown in Fig. 6 as the solid green curve. The number in each
panel indicates the update cycle. At the initial time a correlation length scale of l = 2010

is imposed. The green curve is the correlation between the α perturbations at the point
marked 0 on the x-axis and that at the neighboring grid points around the latitude circle.
The dashed yellow line shows the localization function corresponding to cutoff radius
c = 20. The dashed black curve in each panel shows a gaussian with length scale of 5
grid point for reference. At each update cycle AOD data are assimilated and all these15

α perturbations are updated thereby modifying the correlation of α with surrounding
points. As the update cycles proceed the correlation function narrows down, as seen
in the successive panels in Fig. 6. In fact it converges towards a function with a length
scale of about 5 grid points as seen in the last few update cycles. The parameter esti-
mation results in a length scale of α perturbations of approximately 5 grid points, but20

the localization is allowing information from much further away to impact the local esti-
mate of α . The correlations with points further away than 5 grid points tend to be bad
and hence as the updates proceed the red (squares) curve in Fig. 5 degrades.

The correlation functions for many grid points at various locations are inspected and
it is found that the correlation length converges to about 5 grid points. A new tuning25

experiment is run with l = 5, c = 5. The result of this experiment is shown in Fig. 5 as
the solid green curve. Clearly l = 5, c = 5 performs far better than l = c = 0 and l = c =
20. Another experiment is run with l = 20, c = 5. The tuning curve for this experiment
is shown by the solid red curve in Fig. 5. The tuning for l = 20, c = 5 is as good as that
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for l = 5, c = 5. This is because for the l = 20 experiment as the update cycles proceed
the correlation function narrows to about 5 grid points. Also because c = 5, effectively
only observations within a radius of about 5 grid points are used to update α at any
grid point.

The tuned map at the last update cycle for l = 20, c = 5 experiment is shown in5

Fig. 5i. The tuned map corresponding to the l = c = 20 experiment (solid red (squares)
curve in Fig. 5) is shown in Fig. 5g. Clearly the tuned map in Fig. 1i recovers the perfect
map shown in Fig. 1a more accurately than does the l = c = 0 experiment (Fig. 1e) or
the l = c = 20 experiment (Fig. 1g). Comparing Fig. 1f, j the estimate from the l = 20,
c = 5 experiment is constrained better than l = c = 0 experiment as can be inferred10

from the lower values of spread in Fig. 1j.
The spatial distribution of tuned points for l = 20, c = 5 experiment is shown in

Fig. 4b. Comparing this figure with Fig. 4a correlating perturbations and using more
observations leads to tuning gains in high advection/low friction velocity regions like
W1, W2, W3 and W4. This confirms our hypothesis that correlating perturbations leads15

to decrease in advection noise thereby improving the covariance estimates. This also
indicates that for this particular problem, on an average over the domain, an emergent
correlation length scale is about 5 grid points (400 km). Imposing a correlation function
of l = 5 is leading to better covariances. This does not mean that advection mainly hap-
pens over a length scale of 5 grid points. Advection most probably is taking place over20

longer length scales. However, the linear signal due to advection survives only over a
length scale of l = 5 grid points.

Various other experiments with different values of l and c are run to further investi-
gate the interplay between correlation length and cutoff radius. The red and blue curves
correspond to experiments with correlation length scales l = 20 and l = 10 (800 km),25

respectively. The behavior of the red (circles) curve (l = 20, c = 10) is similar to that
of red (squares) curve. For l = 20, c = 10, the correlation function narrows down and
converges to about 5 grid points, similar to the case of l = c = 20,. However the degra-
dation is not as much as the l = c = 20 because only observations within radius of c=10
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grid points are being assimilated. The amount of bad covariances being used are less
in c = 10 experiment compared to the c=20 experiment. The experiment with l = 10,
c = 5 (solid green curve) gives a result comparable with l = 5, c = 5 and l = 20, c = 5.
This shows that if l > c than the correlation length is effectively l = c as far as the data
assimilation is concerned. As the update cycles proceed, l converges to 5 grid points.5

Before this convergence happens since c < l , the observational information beyond a
distance of c is not used. For the l = 10 experiments with c = 10 (blue circles) and
c = 20 (blue squares) the behavior is similar to the l = 20 experiment with similar val-
ues of c. This shows that l > 5 is too broad for this problem and if c is specified longer
than 5 then the data assimilation narrows the correlation function to 5 grid points. Lastly10

consider the dashed curves which show results for c = 0 for various values of l . These
curves approximately overlap showing that it is futile to correlate perturbations without
using observations in the neighborhood. The curves with c ≥ l , for c > 5, show that
using observations outside the correlated area degrades the tuning which is because
of inaccurate covariances. Figure 7 shows the tuning at a particular point marked x in15

W1 area in Fig. 4. The dashed magenta line uses observations only at the same grid
point and hence the updates take place only when data is available at that grid point.
Though the solid magenta curve has access to more observations, the covariance es-
timates are not good enough because the perturbations are not correlated. The red
curve (squares) uses observations over a length scale of c = 20 while as the updates20

progress the correlation narrows to 5 grid points. Consequently, the estimate does not
converge towards the perfect value of α at this grid point very well. The solid green,
blue and red curves converge smoothly because the correlation is over a scale of 5 grid
points. These curves have access to more observational information and improved sig-
nal because of correlation.25

The results from all these experiments suggest that the observations are able to
uncover the correlation scale between neighboring α field provided the initial α pertur-
bations are correlated over a broad length scale. This correlation scale for this problem
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is about 5 grid points. As seen in Sect. 4, if the initial α perturbations are uncorrelated,
the observations are not able to impose a correlation structure as the updates proceed.

The sensitivity of the OSSE tuning results to ensemble size was found by running
experiments with smaller ensemble sizes. As noted, for an ensemble size of N = 40,
about 85 % of the grid points are tuned for the l = 20, c = 5 experiment (solid red curve5

in Fig. 5). This percentage decreases to 75 %, 60 % and 45 % for an ensemble size of
20, 10 and 5, respectively.

These results from the OSSE experiments provide valuable insights into the tuning
of erodibility. They show that under ideal circumstances the erodibility is amenable to
tuning given realistic observational coverage and errors. Ideal circumstances mean that10

the only model error is imperfect values of erodibility. Even so it provides confidence in
the tuning methodology to proceed with experiments with real data. The next section
describes the tuning experiments with real satellite data.

6 Real data

MODIS Deep Blue data (Remer et al., 2005; Hsu et al., 2004, 2006; Shi et al., 2011) is15

used for the experiments with real data. The satellite data is averaged over a box of 3
grid points (about 240 km) to obtain super observations. The errors in the observations
could be correlated. The averaging serves to decorrelate these errors. The super ob-
servations are assimilated into the COAMPS model using the ensemble based tuning
methodology. Here the observational error is set equal to 0.15+10 % AOD units, but20

realistically the errors for some locations can be considerably greater (Shi et al., 2011).
Shi et al. (2011) also found that lower values of AOD observations tend to have higher
relative uncertainty than higher values. Incorporating 0.15 AOD units in the observa-
tional error assigns high errors to observations below 0.15. The tuning experiment for
the real data runs from 12 June 2009 to 8 July 2009. MODIS satellite data is assimilated25

every 24 h at 12:00 Z. In total the tuning experiment uses 28 update cycles. The period
from 8 July 2009 to 30 July 2009 is used for verification. The threshold friction velocity
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is set to 0.6 ms−1. It has to be noted that the experiment with real data is completely
separate from the OSSE experiment described in Sects. 3, 4 and 5.

The operational values of α (Fig. 1a) are used as the mean of the initial guess.
The ensemble perturbations in are correlated over a length scale of 5 grid points. The
standard deviation of α at each grid point is set equal to 0.25. The negative ensemble5

members are set equal to 0.01. The mean and standard deviation of this initial guess
are shown in Fig. 8a and b, respectively. The standard deviation in some areas in
Fig. 8b is lower than 0.25. This is because in these areas the mean of the initial guess
has low values and therefore the ensemble members below the value of zero are set
equal to 0.01. This decreases the standard deviation below 0.25. In this experiment10

the correlation cutoff radius is set equal to 5. After 28 update cycles the mean of tuned
α converges to values shown in Fig. 8c. The standard deviation in the mean of these
tuned values is shown in Fig. 8d. Considering the tuned map, on an average in west
Sahara and Arabia the parameter estimation results in lower values of α compared to
the operational values (Fig. 1a). In the South Sahara region (between latitude 5 and15

10◦ N) α converge to higher values. During the tuning process the ocean values of α
are set equal to zero within the model. Comparing Fig. 8b and d it is evident that the
standard deviation in the mean of the tuned values decreases to about 0.05 compared
to the initial guess standard deviation.

The performance of these tuned maps in forecasting AOD is compared to that of20

the operational map. The verification is done over a period independent of the tuning
period. Recall that the tuning experiment for the real data runs from 12:00 Z, 12 June
2009 to 12:00 Z, 8 July 2009 (28 days). The period from 8 July 2009 to 30 July 2009 (19
days) is used for verification. Two separate data assimilation (verification) experiments
are run over the verification period. In these experiments only the dust concentration25

is estimated. The erodibility parameter map is held fixed. The first DA experiment uses
the operational erodibility map (Fig. 1a) and the second uses the tuned erodibility map
(Fig. 8c). The same MODIS observations are assimilated in each of these experiments.
For each experiment we have access to analysis ensemble on 19 different days. For
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each experiment, 24, 48, 72 and 96 h ensemble forecast is launched from each of
these analysis ensembles. Consequently, for each of the two experiments we have 19
different forecast ensemble means. The MODIS observations at the respective days
are used to verify the forecast means in each experiment. For a given day MODIS ob-
servations are used to verify the forecast launched from the last day, but this data is5

also assimilated to generate the posterior. This is not a problem because 24 h is long
enough for the dust generation and transport to render the forecast almost indepen-
dent of the initial conditions. The source of dust, that is the erodibility values, plays a
dominating role in deciding the spatial distribution of dust over the 24 h period.

Consider the verifications of these two experiments on a particular day. Figure 910

shows the mean estimates of AOD on 20 July 2009 at 12:00 Z. Figure 9e shows the
satellite observations of AOD at 12:00 Z, 20 July 2009. The right side panels (Fig. 9b,
d) corresponds to the operational experiments. Figure 9a, c shows the estimates from
the tuned experiment. The same MODIS data are assimilated into each of these exper-
iments. The prior shown in Fig. 9a is the mean of the 24 h ensemble forecast launched15

starting from the posterior AOD on 19 July 2009 for the tuned experiment. This forecast
for the operational experiment is shown in Fig. 9b. Comparing Fig. 9a, b to e, the tuned
forecast agrees with the observations more than the operational forecasts. Figure 9c
shows the posterior AOD field corresponding to the prior in Fig. 9a. Figure 9d shows
the posterior corresponding to Fig. 9b. The same data (Fig. 9e) is assimilated into the20

tuned and operational priors to obtain posteriors in Fig. 9c, d and hence these pos-
teriors are similar. These posteriors are used as initial conditions to launch the next
24 h ensemble forecasts. These forecasts (priors) valid at 12:00 Z, 21 July are shown
in panels a, b in Fig. 10. The satellite observations on 21 July 2009 are shown in
Fig. 10c. The tuned forecast (Fig. 10a) matches better with the observations (Fig. 10c)25

than does the operational forecast (Fig. 10b). Note that these tuned and operational
forecasts used similar initial conditions in AOD, which are given by panels c, d of Fig. 9.
In spite of these similar initial conditions the operational forecast (prior) is different from
the tuned forecast on 21 July with operational forecasts giving higher AOD values on
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21 July. Note that the same meteorology is used in both the operational and tuned ex-
periments. The only difference between the tuned and operational experiments is the
different maps of erodibility. Therefore the difference between these forecasts is due to
different values in the erodibility maps. The lower values of AOD in tuned forecasts are
attributable to lower values of erodibility in the tuned map (Fig. 8c) compared to the5

operational map (Fig. 1a).
Both on 20 and 21 July the tuned forecasts give lower values of AOD thus resulting

in better verifications compared to the operational forecasts. The comparison of verifi-
cations over the 19 days is performed by using mean absolute error which is calculated
as follows. At each particular grid point, for each 24 h lead time the absolute difference10

between the mean operational forecast and the MODIS observation is calculated.

εop =
∣∣AODop −AODobs

∣∣
Then at each grid point, the average of εop over different forecasts is the mean absolute
error for the operational model. Similarly, the absolute difference between the mean
tuned forecast (AODtu) and observation is calculated.15

εtu = |AODtu −AODobs|

At each grid point, the average of εtu over different forecasts is the mean absolute error
for the tuned model. At each grid point, the operational and tuned mean absolute errors
are used to calculate the metric difference mean absolute error (dMAE),

dMAE = εop −εtu20

This metric is a simple and convenient way to quantify the comparative performance of
the operational and tuned models in forecasting the AOD, at each grid point. If dMAE >
0 it means that the operational model errs more than the tuned model in forecasting
the AOD. If dMAE > 0 at a particular grid point then the tuned model outperforms the
operational model. On the other hand if dMAE < 0 it means that the operational map25

performs better at that grid point.
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The dMAE corresponding to the tuned map in Fig. 8c is shown in Fig. 11 with con-
tours of high friction velocity overlaid. Figure 11a shows the dMAE calculated for the
forecast lead time of 24 h. The tuned map outperforms the operational map largely in
the Western Sahara and Arabia regions. The tuned map gives better forecasts than
the operational map to some extent in the horn of Africa. In most of the other regions5

the MAE is within −0.1 and +0.1 indicating that the tuned and operational forecast are
almost similar. There are a couple of pockets near Central Sahara where the tuned
map gives degraded performance. These areas are blue in color. Panels b, c in Fig. 11
show the dMAE for longer lead times of 48 and 96 h respectively. Comparing Fig. 11a–
c it is clear that broadly the pattern of areas where the tuned model outperforms the10

operational model are similar for all lead times. However, comparing the red areas in
the vicinity of point S in Fig. 11a, b the tuned model performs better over a larger region
for the 96 h forecast compared to the 24 h forecast. Also the magnitude of improvement
of the tuned model is higher for longer lead time in this area. This is also true in the
Arabian peninsula. An important dMAE feature that develops with longer lead times is15

in the vicinity of points O and W off the coast of Africa. The red color near point O in
Fig. 11c indicates that the tuned model gives a better forecast at 96 h; whereas the
tuned model is as good as the operational model in this area at 24 h. In Fig. 12 the rel-
ative performance of the tuned and operational models is further probed by inspecting
the AOD forecasts at each of the marked points in Fig. 11.20

The time series of AOD forecasts at point S are shown in Fig. 12a. See the legend
in Fig. 12b. The black curve shows the AOD observations. The dashed green curve
shows u∗ scaled by a factor of 5, during the verification period. Clearly, u∗ is above
the threshold level of 0.6 ms−1 for almost all the verification times. The solid curves
show the operational forecasts at lead times of 24 and 96 h. The dashed curves show25

the tuned forecasts. The title of the panel shows the value of operational and tuned
erodibility. At point S, the operational α is 0.32 and the tuned α is 0.04. The title of
the panel also shows the dMAE at 24 and 96 h which is 2.2 and 2.9, respectively. The
number 78.0 and 95.0 shown in the panel are the percentage of times when the u∗
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exceeds the threshold value during the tuning and verification periods, respectively.
So at this point out of the total number of cycles (28) in the tuning period, u∗ exceeds
the threshold value 78 % of times. This point is an example of a grid point where u∗
is very strong both during the tuning and verification periods. Because the signal is
strong during the tuning period this point is “tuned correctly”, decreasing the value5

from 0.32 to 0.04. The phrase “tuned correctly” should be carefully interpreted. We
don’t know the values of erodibility in nature. Because the (tuned) forecasted AOD
matches well with the observations at this point, we draw the conclusion that the tuned
value is correct. The dashed blue curve matches well with the observations while the
operational forecast (blue curve) is too high. The low value of tuned AOD can be directly10

attributed to the lower value of tuned erodibility at point S. Note that the tuned AOD not
only has a smaller bias (with respect to the observations) compared to the operational
AOD values but also a smaller standard deviation. In both the tuned and operational
model the 96 h forecast is higher than the 24 h forecast. This suggests that there is
some accumulation of dust over the 96 h. This accumulation seems to be more for15

the operational than the tuned model as the separation between red and blue curves is
larger for the operational model. This accumulation might be because in the operational
model the production is more because of higher erodibility of 0.32 (compared to 0.04).
The higher dMAE of 2.9 at 96 h compared to 2.2 at 24 h means that the operational
model errs more (compared to the tuned model) at 96 h than at 24 h. Note that both the20

operational and tuned forecasts follow the trend in the friction velocity (green curve).
In Fig. 11, consider the white area to the lower right of point S, around the point

marked P. The verification for this point is shown in Fig. 12b. At this point u∗ exceeds
the threshold value for about half the time during both tuning (60 %) and verification
(55 %) periods. This point has low value of erodibility in the operational map. Because25

the operational values are “correct” the tuning methodology does not change this value
much. The inference that these values are “correct” is drawn from the fact that at point
P both operational and tuned models do (equally) well in predicting the observations.
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In Fig. 11 consider the point N near the Red Sea. The time series of AOD at this
point in shown in Fig. 12c. The downward correction in tuned value from 0.18 to 0.03
is reflected in a bias correction in the AOD forecasts. Also the tuned forecasts has a
lower standard deviation. Note that at this point u∗ is strong only for 17 % of time and
yet it gets tuned correctly. This grid point implies the quality of tuning need not directly5

depend only on the number of times u∗ exceeds the threshold value. It is possible that
at a given grid point u∗ is strong only a couple of times and the covariance signal is
enough to tune the point correctly. Both the operational and tuned models follow the
trend in the friction velocity. Now consider the point M in the red sea (Fig. 11). The
time series at this point is shown in Fig. 12d. The erodibility value at any location in10

the ocean is 0 in the operational map. In the tuning experiment the erodibility is set to
zero at all points in the ocean. Hence the tuned value of erodibility is 0 at the point M.
At this point the tuned model performs worse than the operational model in forecasting
the AOD. All the AOD at this location is advected from upstream areas. It is not clear
which areas are upstream of this point. It is possible that the land areas south of this15

point are the upstream areas. These southern areas have higher values in the tuned
map than in the operational map.

The case of point V located left of point N is interesting. At this point the tuned value
degrades the forecast resulting in a dMAE of −0.5 (Fig. 12e). The tuned forecasts
over estimates the observations. The tuned value (0.25) of erodibility is higher than20

the operational value. In the vicinity of this area the u∗ is quite weak during the tuning
period. It is possible that the tuning at this point is due to spurious covariances. Note
that the u∗ is quite strong during the verification period.

The point U, close to point V, at the center of the domain has a positive skill score
of 0.4 (Fig. 12f). Though the u∗ at his point is not strong during the tuning period, this25

point lies close to the areas of strong u∗. Therefore it gets tuned correctly to a value of
0.17 which bring the tuned forecast more in agreement with the observations.

The verification at the points marked O and W in Fig. 11, off the coast of Africa is
shown in Fig. 12g and h, respectively. For the point O, the dashed and solid blue curves
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do equally well in predicting the AOD except that the tuned model performs slightly
better on day 8. On this day the operational model gives higher prediction of about
1.4 for the AOD. The dMAE of 0.1 comes mainly from day 8. For the 96 h forecast the
operational model over predicts the AOD especially between day 8 and day 11 resulting
in a dMAE of 0.4. Considering Fig. 12h, the observed AOD is quite high between day5

9 and day 11. Both the tuned and operational models fail to capture this event at 24 h
lead time. However the operational model performs marginally better than the tuned
model at 96 h, giving an AOD forecast of 1.1 for day 9. This contributes to the dMAE of
−0.1 at the lead time of 96 h.

The inspection of these verifications (panels in Fig. 12) clearly shows that for the10

points on the land the operational and tuned model follow the trend in the friction ve-
locity closely both for the 24 and 96 h lead times. This suggests that the local source
is more important compared to the transport, wherever the friction velocity is strong
enough. The 48 h and 72 h curves (not shown) lie intermediate between the 24 and
96 h curves for each respective grid point. Also, in general the 96 h forecast curve lies15

quite close to the 24 h forecast curve, for the tuned and operational models separately.
This indicates that the local sources play the dominant role in deciding the AOD rather
than the errors in the AOD initial conditions.

Consider Fig. 11c, the red areas coincide with areas with high operational erodibility.
In these areas (Western Sahara and Arabia) the operational α was corrected by the20

tuning to a lower value. In the (white) areas other than Western Sahara and Arabia,
both operational and tuned maps perform equally well. The improvement of forecasts
in Western Sahara and Arabia is because tuning leads to a better model of dust gen-
eration, by decreasing the erodibility. However an improvement in the dust generation
over the red areas does not impact the forecasts in the other areas. This means that25

the effect of tuning is localized in space. This might be because of the model error in
dust transport. Both the tuned and operational models used the same meteorology and
therefore the same winds. These might be different from the winds in nature. Both the
tuned and operational model suffers from the model error in meteorology. Because of
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this model error in dust transport, the improved dust generation in the red areas might
not necessarily improve dust forecasts in other areas. In this work meteorological vari-
ables are not estimated.

In almost all the panels in Fig. 12, the 96 h forecasts are higher than the 24 h fore-
casts, for the tuned and the operational model separately. The higher AOD at longer5

lead time points to accumulation of AOD either from local production or from upstream
transport. The higher AOD at 96 h explains the larger coverage of the red area in the
Sahara in Fig. 12c compared to Fig. 12a. For example, the area near (17.5◦ N,0), is
white for the 24 h lead time, but is red for the 96 h forecast. This area has a weak fric-
tion velocity. Most probably the AOD in this area is coming mainly from the adjoining10

areas in the north and south which are rich in friction velocity. The tuned and opera-
tional model give similar AOD forecast for 24 h, but at 96 h the operational model gives
a much higher AOD than the tuned model’s 96 h forecast resulting in a positive dMAE
at 96 h. Because both the models use the same meteorology and sinks, the higher
operational AOD at 96 h is due to higher production in the upstream areas. This higher15

production is due to the higher operational erodibility in the Sahara.
The tuned and operational forecasts were compared to climatology and it was found

that neither were able to outperform the climatology.

7 Conclusions and further work

In this work the EAKF with 40 ensemble members is successfully applied to the tuning20

of spatially distributed erodibility parameters over the Sahara and Arabia. OSSE exper-
iments showed that these parameters could be successfully tuned given observations
of AOD if an appropriate correlation structure is applied to the initial perturbations of
erodibility and a supporting localization radius is applied. A priori one does not know
the appropriate length scale that should be used for the correlation structure. If an initial25

correlation structure is not imposed, the data assimilation does not induce a correlation
among the erodibility perturbations. However, if a long correlation length scale is im-
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posed along with a long cutoff length scale then at each grid point the correlation length
scale converges towards the appropriate correlation length scale. Various experiments
with different long length scales were run. It is found that the appropriate length scale
for this problem is 5 grid points which is about 400 km. The tuning experiment with
a correlation length scale of 5 grid points resulted in the best tuning in OSSE. This5

methodology of specifying a long length scale and allowing it to converge to the appro-
priate value is introduced in this work. It would be exciting to investigate whether this
methodology of determining the appropriate length scale is effective in other parameter
estimation problems. In the current problem the true parameter map is static in that it
does not change with time. It would be interesting to test this methodology in a problem10

where the true parameter map evolves in time.
We have not done tuning experiments with different resolutions. Hence it is not clear if

the correlation length scale of 400 km will prove to be best length scale for this problem
if a different resolution is used. We suspect that this length scale will converge to a
particular value if the resolution is gradually increased.15

It is very important to choose an appropriate value for the cutoff radius. The cutoff
radius limits the area within which observations are used, thereby preventing the fil-
ter from using spurious covariances. If the cutoff radius is larger than the correlation
length scale the tuning degrades. This is because then the update uses covariances
from regions that are uncorrelated in erodibility. These covariances are potentially spu-20

rious because the covariances between AOD at different points is partly controlled by
correlation between the erodibility perturbations at these points.

The tuning methodology is implemented with MODIS satellite data. In general, it is
found that the operational model overestimates observed AOD. The ensemble based
tuning correctly identifies this high bias and corrects the operational erodibility maps to25

lower values. The tuned values are especially low compared to the operational values in
the Western Sahara and Arabia regions. Verification experiments show that the tuned
forecasts are more in agreement with the MODIS observations than the operational
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forecasts. In the Western Sahara and Arabia areas the gain in forecast accuracy due
to tuning is as high as 1.5 AOD units.

In both the OSSE and experiments with satellite data the tuned maps are robust to
changes in the initial guess, even with only 40 ensemble members. It is found that the
tuned forecast does not outperform the climatology of AOD observations.5

The friction velocity plays a central role in the generation of dust. The quality of tuning
depends on whether the signal due to friction velocity rises above the noise due to
advection of AOD from upstream regions. A weak signal could result in spurious tuning.
The areas that are expected to be tuned are those with strong friction velocities during
the tuning period. Therefore areas with low friction velocity during the tuning period10

and high friction velocity during the verification period might not show a gain in forecast
accuracy. A potential solution to this problem would be to run the tuning experiment for
a longer period, say for a whole year so that almost every region experiences strong
friction velocities. Then the tuned map can be verified for another year. This approach
too has a potential problem. The true erodibility probably changes from year to year.15

Therefore having different years for tuning and verification might not be a good idea.
The meteorological state is not estimated in this work. Meteorological observations

could be assimilated to estimate this state which can potentially correct the errors in
transport thereby improving the forecasts. Another potential set of parameters to be
tuned are the sink of the dust.20
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Fig. 1. Shows the mean and standard deviation of erodibility (α ) map, except for (b). The
vertical colorbar applies to (b). The upper horizontal colorbar applies to the left column. The
lower horizontal colorbar applies to the right column (except for b). The mean and standard
deviations are those for the OSSE. The OSSE runs from 20090612 to 20090728. There are
a total of 48 update cycles. The AOD observations are assimilated every 24 hours at 12:00 Z.
(a) These operational values are used as the perfect values of erodibility (α ) in the OSSE. The
observations of AOD are drawn from the perfect model run for the OSSE. A particular grid point
with erodibility of 0.48 is marked with letter K. This map is time independent. In the experiments
with real satellite data the forecast of AOD using this map provides a baseline for verification. (b)
An index of the strength of friction velocity during June/July 2009. The color gives the fraction
(expressed as percentage) of the total number (48) of times the friction velocity exceeds a value
of 0.6 ms−1. For example in the horn of Africa the friction velocity is very strong exceeding
0.6 ms−1 at all times during the 48 cycles. See the vertical colorbar. The map of (not shown)
looks different at each update cycle. (c) and (d) Mean and standard deviation of the initial guess
of α map, respectively, for the tuning experiment described in Sects. 3, 4 and 5. At each grid
point the ensemble members for αi ,j are sampled from a Gaussian distribution ξ (0.25,0.25).
The erodibility at any grid point is uncorrelated with that at any other grid point for experiments
discussed in Sect. 4. (e) and (f) Mean and standard deviation of the α map (after 48 update
cycles), respectively, for the tuning experiment described in Sect. 4. The map shown in (c)
converges to that in (e). The perfect values shown in (a) are recovered to some extent. The
percentage of grid points at which the perfect erodibility values are recovered is shown by
the dashed magenta curve in Fig. 5. The spatial distribution of the quality of tuning for this
experiment is shown in Fig. 4a. (g) and (h) Mean and standard deviation of the tuned α map,
respectively, for the tuning experiment with correlation length scale l = 20 and cutoff radius
c = 20 described in Sect. 5. For this experiment the initial guess of α map is correlated over
a length scale of 20 grid points (∼1620 km). The mean and spread of the initial guess for this
experiment is shown in (c) and (d), respectively. The tuned map performs worse at recovering
the perfect values (a) than the tuned map in (e) as shown by the red (squares) curve in Fig. 5. (i)
and (j) Mean and standard deviation of the tuned α map, respectively, for the tuning experiment
with correlation length scale l = 5 and cutoff radius c = 5 described in Sect. 5. The tuned map
in (i) is more successful in recovering the perfect map in (a) than the tuned map in (g). This is
because the erodibility is correlated over a length scale of 5 grid points. A length scale of 20
grid points is too long. The spatial distribution of quality of tuning for this experiment is shown
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in Fig. 4b. This experiment gives the best tuning of all the experiments as shown by the solid
red curve in Fig. 5.
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 Figure 2 : Tuning ofα at a particular grid point marked K  in Figure 1(a). The estimates of various quantities at this grid 
point are shown. See section 3(ii) for discussion.  

(a) The estimates of α and the spreads. The posterior mean gradually approaches the correct value ofα shown by the 
red line. The observational information constrains the estimate so that the standard deviation ofα decreases.  

(b) The time series of covariance betweenα and AOD at point K is shown in green. The friction velocity partly decides 
this covariance.  

 (c) The prior ensemble members at update cycle 6. This update cycle is marked with squares in (a), (b) and (d). The red 
square shows the mean of the ensemble. The spread in AOD ensemble is partly due to spread in local factors, 

namelyα  and *u  at point K. The remaining spread is due to spread in α  and *u  at regions upstream to point K 
and spread in winds. The covariance is due to spread in erodibility at point K. The remaining factors contribute to 
advective noise that hampers tuning. 

 (d) Estimates of AOD and the standard deviations. 

Fig. 2. Tuning of α at a particular grid point marked K in Fig. 1a. The estimates of various
quantities at this grid point are shown. See Sect. 3.2 for discussion. (a) The estimates of α and
the spreads. The posterior mean gradually approaches the correct value of α shown by the red
line. The observational information constrains the estimate so that the standard deviation of α
decreases. (b) The time series of covariance between α and AOD at point K is shown in green.
The friction velocity partly decides this covariance. (c) The prior ensemble members at update
cycle 6. This update cycle is marked with squares in (a), (b) and (d). The red square shows the
mean of the ensemble. The spread in AOD ensemble is partly due to spread in local factors,
namely α and u∗ at point K. The remaining spread is due to spread in α and u∗ at regions
upstream to point K and spread in winds. The covariance is due to spread in erodibility at point
K. The remaining factors contribute to advective noise that hampers tuning. (d) Estimates of
AOD and the standard deviations.
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Figure 3 : Illustration of cutoff radius and correlation functions with different length scales.  The length scales are 

specified in units of grid points. One grid point corresponds to 81 kms. The dashed lines show the Gaspari-Cohn 

localization functions with different cutoff length scales (c). The solid lines are correlation functions.  For example, the 

solid blue line shows the correlation between α  at the grid point marked 0 on the xaxis and the neighboring grid points 

if l=20.  In this work tuning experiments for α  are run with different value of l and c. At every grid point for a given 

experiment a particular value of l is imposed at the initial time. For example, for all the green curves in Figure 5 the 

correlation function at any grid point at the initial time looks like the solid cyan curve. For all the magenta curves in 

Figure 5, the correlation function at any grid point at the initial time looks like the solid gray curve. 

 

 

 

 

 

 

 

 

Fig. 3. Illustration of cutoff radius and correlation functions with different length scales. The
length scales are specified in units of grid points. One grid point corresponds to 81 km. The
dashed lines show the Gaspari–Cohn localization functions with different cutoff length scales
(c). The solid lines are correlation functions. For example, the solid blue line shows the correla-
tion between α at the grid point marked 0 on the x-axis and the neighboring grid points if l = 20.
In this work tuning experiments for α are run with different value of l and c. At every grid point
for a given experiment a particular value of l is imposed at the initial time. For example, for all
the green curves in Fig. 5 the correlation function at any grid point at the initial time looks like
the solid cyan curve. For all the magenta curves in Fig. 5, the correlation function at any grid
point at the initial time looks like the solid gray curve.
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Figure 4 : Yellow color points show the (correctly) tuned grid points. The white or clear grid points show the unturned 

points.  The (correctly) tuned point  lies  within 0.05 absolute units of the perfect value at a given grid point. The blue 

colored contours enclose areas with strong friction velocity (Figure 1(b)) . The red contours enclose areas with high 

erodibility (Figure 1(a)). Higher friction velocities gives rise to a stronger covariance signal which helps tuning. Areas 

enclosed by red contours have higher advective noise which impedes tuning. 

(a) Shows the quality of tuning for the tuning experiment corresponding to Figure 1(e). The areas with strong friction 
velocity, for example S1, S2 and S3 tend to be tuned correctly. Some areas with weak friction velocities are marked 
W1, W2, W3 and W4. These tend to be tuned poorly. Out of the total number of grid points about 70% are (correctly) 
tuned in this experiment. See the dashed magenta curve in Figure 5. 

(b) Shows the quality of tuning for the tuning experiment corresponding to Figure 1(i). Many untuned grid points in 
areas of weak friction velocity in panel(a) are successfully tuned in this experiment. This is because correlating the 
erodibility at neighboring grid points leads to a decrease in advective noise. More importantly any given grid point uses 
more observations because of the longer cutoff compared to panel (a). About 85% of the total grid points are tuned 
correctly. See the solid red curve in Figure 5. 

 

Fig. 4. Yellow color points show the (correctly) tuned grid points. The white or clear grid points
show the unturned points. The (correctly) tuned point lies within 0.05 absolute units of the
perfect value at a given grid point. The blue colored contours enclose areas with strong friction
velocity (Fig. 1b). The red contours enclose areas with high erodibility (Fig. 1a). Higher friction
velocities gives rise to a stronger covariance signal which helps tuning. Areas enclosed by red
contours have higher advective noise which impedes tuning. (a) Shows the quality of tuning
for the tuning experiment corresponding to Fig. 1e. The areas with strong friction velocity, for
example S1, S2 and S3 tend to be tuned correctly. Some areas with weak friction velocities
are marked W1, W2, W3 and W4. These tend to be tuned poorly. Out of the total number of
grid points about 70% are (correctly) tuned in this experiment. See the dashed magenta curve
in Fig. 5. (b) Shows the quality of tuning for the tuning experiment corresponding to Fig. 1i.
Many untuned grid points in areas of weak friction velocity in (a) are successfully tuned in
this experiment. This is because correlating the erodibility at neighboring grid points leads to
a decrease in advective noise. More importantly any given grid point uses more observations
because of the longer cutoff compared to (a). About 85% of the total grid points are tuned
correctly. See the solid red curve in Fig. 5.
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Figure 5 : The tuning curves for OSSE experiments with different values of  l and c.  Each curve shows the percentage  

of grid  points tuned correctly as the update cycles proceed. The values of l and c are specified in grid point units. A  

distance of 10 grid points corresponds to 800 km. If c<l, then effectively l=c. If c>l, the results degrade because 

 observations outside  the correlated areas are used. For this problem (of tuning  α  in North Africa)  a correlation length 

 scale of 5 grid points  (400 km) gives the best results. See sections 4 and 5 for discussion. 

 

Fig. 5. The tuning curves for OSSE experiments with different values of l and c. Each curve
shows the percentage of grid points tuned correctly as the update cycles proceed. The values
of l and c are specified in grid point units. A distance of 10 grid points corresponds to 800 km.
If c < l , then effectively l = c. If c > l , the results degrade because observations outside the
correlated areas are used. For this problem (of tuning α in North Africa) a correlation length
scale of 5 grid points (400 km) gives the best results. See Sects. 4 and 5 for discussion.
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Figure 6 : Evolution of the correlation function at a particular grid point (marked x in area W1 in Figure 4) for the experiment  

with l=c=20.  Each panel is for a different update cycle. The numbers inside each panel show the update cycle. The dashed  

yellow  curve shows the localization function. The black dashed curve shows a Gaussian with a spread of 5 grid points for  

reference. The green curve is the correlation function. At the initial time a correlation of l=20 is imposed (panel at time 0). 

 It is seen that as the update cycles proceed the correlation length scale converges towards 5 grid points at this grid point.  

The localization function does not change with the update cycles and hence the dashed yellow curve is the same in all the  

panels. 

Fig. 6. Evolution of the correlation function at a particular grid point (marked x in area W1 in
Fig. 4) for the experiment with l = c = 20. Each panel is for a different update cycle. The num-
bers inside each panel show the update cycle. The dashed yellow curve shows the localization
function. The black dashed curve shows a Gaussian with a spread of 5 grid points for reference.
The green curve is the correlation function. At the initial time a correlation of l = 20 is imposed
(panel at time 0). It is seen that as the update cycles proceed the correlation length scale con-
verges towards 5 grid points at this grid point. The localization function does not change with
the update cycles and hence the dashed yellow curve is the same in all the panels.
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Figure 8 : The tuning experiment with real satellite data.  The tuning experiment for real data runs from 12 June 2009 to 
8 July 2009. The satellite data is assimilated at 12Z after every 24 hours. There are a total of 28 update cycles in the 
tuning experiment. The left colorbar is for panels (a) and (c). The right colorbar is for the standard deviations shown in 
panels (c) and (d). 

 (a)  The operational values of α are used as mean of initial guess.  The erodibility at any given grid point is correlated 
with that at the neighboring grid points over a length scale of l=5. 

 (b)  Standard deviation of initial guessα are  is set equal to 0.25. In areas with low values of mean, the spread is 
smaller than 0.25 because the ensemble members with negative values are set equal to 0.01. 

 (c)  The mean of tuned values after 28 update cycles. On an average, the tuned values are lower than the operational 
values. 

 (d)  The standard deviation of tuned values after 28 updates cycles. 

 

Figure 7 : Comparison between tuning for different values of l and c at a particular point. This point is marked x 
in the W1 area in Figure 4. The evolution of the correlation function at this point is shown in Figure 6. 

 

Fig. 7. Comparison between tuning for different values of l and c at a particular point. This
point is marked x in the W1 area in Fig. 4. The evolution of the correlation function at this point
is shown in Fig. 6.
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Figure 8 : The tuning experiment with real satellite data.  The tuning experiment for real data runs from 12 June 2009 to 
8 July 2009. The satellite data is assimilated at 12Z after every 24 hours. There are a total of 28 update cycles in the 
tuning experiment. The left colorbar is for panels (a) and (c). The right colorbar is for the standard deviations shown in 
panels (c) and (d). 

 (a)  The operational values of α are used as mean of initial guess.  The erodibility at any given grid point is correlated 
with that at the neighboring grid points over a length scale of l=5. 

 (b)  Standard deviation of initial guessα are  is set equal to 0.25. In areas with low values of mean, the spread is 
smaller than 0.25 because the ensemble members with negative values are set equal to 0.01. 

 (c)  The mean of tuned values after 28 update cycles. On an average, the tuned values are lower than the operational 
values. 

 (d)  The standard deviation of tuned values after 28 updates cycles. 

 

Figure 7 : Comparison between tuning for different values of l and c at a particular point. This point is marked x 
in the W1 area in Figure 4. The evolution of the correlation function at this point is shown in Figure 6. 

 

Fig. 8. The tuning experiment with real satellite data. The tuning experiment for real data runs
from 12 June 2009 to 8 July 2009. The satellite data is assimilated at 12:00 Z after every 24 h.
There are a total of 28 update cycles in the tuning experiment. The left colorbar is for (a) and
(c). The right colorbar is for the standard deviations shown in (c) and (d). (a) The operational
values of α are used as mean of initial guess. The erodibility at any given grid point is correlated
with that at the neighboring grid points over a length scale of l = 5. (b) Standard deviation of
initial guess α are is set equal to 0.25. In areas with low values of mean, the spread is smaller
than 0.25 because the ensemble members with negative values are set equal to 0.01. (c) The
mean of tuned values after 28 update cycles. On an average, the tuned values are lower than
the operational values. (d) The standard deviation of tuned values after 28 updates cycles.
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Figure 9 : Mean AOD estimates on 20 July 2009 at 12Z.   

(a) and (b) Priors using the tuned (Figure 8(c)) and the operational maps (Figure 1(a)) respectively. These are the 
means of the 24 hour ensemble forecast  launched from the ensemble analysis on 19 July.   

(c) and (d) Posteriors obtained by assimilating satellite data into the priors shown in (a) and (b) respectively. 

(e)  Satellite observations. The tuned prior (panel (a)) looks more similar to these observations than does the operational 
prior (panel(b)). 

Figure 10 : Mean AOD estimates on 21 July 2009 at 12Z. See the colorbar in Figure 9. 

 (a) and (b) are the forecasts launched from the tuned and operational posteriors on 20 July, respectively. 

(c) Satellite observations. The tuned forecast (panel(a))  matches better with the observations (panel(c)) than does the 
operational forecast (panel(b)).  Even the though the initial conditions in AOD are similar on 20 July (Figure 9(c) and (d)) 
the operational forecast gives higher AOD values than the tuned forecast. This is because the tuned values (Figure 8(c)) of 
erodibility are smaller than the operational values (Figure 1(a)). 

Fig. 9. Mean AOD estimates on 20 July 2009 at 12:00 Z. (a) and (b) Priors using the tuned
(Fig. 8c) and the operational maps (Fig. 1a), respectively. These are the means of the 24 h
ensemble forecast launched from the ensemble analysis on 19 July. (c) and (d) Posteriors
obtained by assimilating satellite data into the priors shown in (a) and (b), respectively. (e)
Satellite observations. The tuned prior (a) looks more similar to these observations than does
the operational prior (b).
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Figure 9 : Mean AOD estimates on 20 July 2009 at 12Z.   

(a) and (b) Priors using the tuned (Figure 8(c)) and the operational maps (Figure 1(a)) respectively. These are the 
means of the 24 hour ensemble forecast  launched from the ensemble analysis on 19 July.   

(c) and (d) Posteriors obtained by assimilating satellite data into the priors shown in (a) and (b) respectively. 

(e)  Satellite observations. The tuned prior (panel (a)) looks more similar to these observations than does the operational 
prior (panel(b)). 

Figure 10 : Mean AOD estimates on 21 July 2009 at 12Z. See the colorbar in Figure 9. 

 (a) and (b) are the forecasts launched from the tuned and operational posteriors on 20 July, respectively. 

(c) Satellite observations. The tuned forecast (panel(a))  matches better with the observations (panel(c)) than does the 
operational forecast (panel(b)).  Even the though the initial conditions in AOD are similar on 20 July (Figure 9(c) and (d)) 
the operational forecast gives higher AOD values than the tuned forecast. This is because the tuned values (Figure 8(c)) of 
erodibility are smaller than the operational values (Figure 1(a)). 

Fig. 10. Mean AOD estimates on 21 July 2009 at 12:00 Z. See the colorbar in Fig. 9. (a) and (b)
are the forecasts launched from the tuned and operational posteriors on 20 July, respectively.
(c) Satellite observations. The tuned forecast (a) matches better with the observations (c) than
does the operational forecast (b). Even the though the initial conditions in AOD are similar on
20 July (Fig. 9c, d) the operational forecast gives higher AOD values than the tuned forecast.
This is because the tuned values (Fig. 8c) of erodibility are smaller than the operational values
(Fig. 1a).
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Figure 11 : Result of the verification experiment. The color shows the difference Mean Absolute Error (dMAE). 
Each panel is for a different lead time. Red colors  are areas where the tuned map (Figure 8 (c))  verifies better 
compared to operational map (Figure 1(a)).  In the white areas the tuned and operational maps perform equally 
well. The green contours enclose areas in which the friction velocity is strong over the tuning period. Some 
points are marked with letters. The verification time series at these points is shown in Figure 12. 

Fig. 11. Result of the verification experiment. The color shows the difference mean absolute
error (dMAE). Each panel is for a different lead time. Red colors are areas where the tuned
map (Fig. 8c) verifies better compared to operational map (a). In the white areas the tuned and
operational maps perform equally well. The green contours enclose areas in which the friction
velocity is strong over the tuning period. Some points are marked with letters. The verification
time series at these points is shown in Fig. 12.
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Figure 12 : AOD  verifications at different grid points marked by letters in Figure 11. Legend in panel (b) applied to all  

panels. The black curve in each panel are the observations. The dashed green curve shows the friction velocity (in m/s)  

scaled by  a factor of 5. The value of 3.0 on the yaxis corresponds to the threshold  friction velocity value of 0.6 m/s.  The  

solid curves are for the operational model. The blue curves are for the 24 hour forecast and the red curves are for the 96  

hour forecasts. The curves for the 48 hours and 72 hours forecast are not shown, for clarity. These tend to lie intermediate  

between the 24 hour and 96 hours forecast in each panel. In the title of each panel the 24 hour and 96 hour dMAE is  

mentioned. The title also shows the operational and tuned value of erodibility. 

Fig. 12. AOD verifications at different grid points marked by letters in Fig. 11. Legend in (b)
applied to all panels. The black curve in each panel are the observations. The dashed green
curve shows the friction velocity (in ms−1) scaled by a factor of 5. The value of 3.0 on the y-axis
corresponds to the threshold friction velocity value of 0.6 ms−1. The solid curves are for the
operational model. The blue curves are for the 24 h forecast and the red curves are for the 96 h
forecasts. The curves for the 48 h and 72 h forecast are not shown, for clarity. These tend to
lie intermediate between the 24 h and 96 h forecast in each panel. In the title of each panel
the 24 h and 96 h dMAE is mentioned. The title also shows the operational and tuned value of
erodibility.
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